Removal of Mn from aqueous solution by manganese oxide coated zeolite

نویسندگان

  • Silvio R. Taffarel
  • Jorge Rubio
چکیده

The preparation, characterization, and adsorption properties of Mn by manganese oxide coated zeolite (MOCZ) and its ability in removing Mn by adsorption were investigated. Characterization analyses were used to monitor the surface properties (and their changes) of the coated layer and metal adsorption sites on the surface of MOCZ. The adsorption experiments were carried out as a function of solution pH, adsorbent concentration and contact time. Binding of Mn ions onto MOCZ was highly pH dependent with an increase in the extent of adsorption with the pH of the media investigated. After the Mn adsorption by MOCZ, the medium pH decreased and enhanced with increasing adsorbent concentration. The pseudosecond-order model fitted better among all the kinetic models suggesting that the adsorption mechanism might be a chemisorption process. The equilibrium data showed excellent correlation for both Langmuir and Freundlich isotherm model and this implies both monolayer adsorption and a heterogeneous surface existence in MOCZ. At pH = 6, the Mn uptake by MOCZ attained as high as 1.1 meq Mn g 1 at equilibrium. The results suggested that MOCZ presents a fairly good potential as an adsorbent for an efficient removal of Mn ions from aqueous solution. 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Fe2+ from Aqueous Solution Using Manganese Oxide Coated Zeolite and Iron Oxide Coated Zeolite

The adsorption of Fe2+ by the manganese oxide coated zeolite (MOCZ) and iron oxide coated zeolite (FOCZ) was studied. Surface properties of adsorbents have been investigated for monitoring their changes and morphology for both of the MOCZ and FOCZ. Main variables namely; contact time, pH, initial concentration of Fe2+, size and dosage of adsorbent have been optimized, and the results contrasted...

متن کامل

Removal of Manganese from an Aqueous Solution Using Micellar-Enhanced Ultrafiltration (MEUF) with SDS Surfactants

In the present study, micellar-enhanced ultrafiltration (MEUF) was used to remove manganese (Mn) (II) from synthetic wastewater. The effects of different operational conditions on the filtration performance of MEUF or the membrane were studied. It was found that the transmembrane pressure has a major influence on the permeate flux and an insignificant effect on the rejection coefficient. The pe...

متن کامل

Photocatalytic Removal of Hexavalet Chromium from Aqueous Solution Using Zinc Oxide Nanoparticle Stabilized On Zeolite

Backgrounds & objectives: Heavy metals, such as chromium, are the most common pollutants usually found in high concentrations in industrial wastewater and cause damages to aquatic environments and endanger the health of living organisms, especially human. Therefore, the purpose of this research was to investigate the photocatalytic removal of hexavalent chromium from aqueous solution using UV/Z...

متن کامل

Removal of styrene from air by photocatalytic process of Zeolite Socony Mobil-5 coated with zinc oxide nanoparticles

Background: Volatile organic compounds (VOC) are considered as major environmental contaminants that have a harmful effect on human and ecosystem health, so much effort has been focused on their removal. The aim of this study was to investigate the removal efficiency of styrene by Zeolite Socony Mobil-5 (ZSM-5) after immobilization of nanoparticles of zinc oxide (ZnO) on it. Materials and Meth...

متن کامل

Fast and efficient adsorptive removal of manganese (II) from aqueous solutions using malicorium magnetic nanocomposites

Malicorium supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles were synthesized by a low-cost, simple,and environmentally benign procedure. The adsorbent was characterized by several methods includingX-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infraredspectroscopy (FT-IR). Then, the potential of malicorium supported Ni0.5Zn0.5Fe2O4 magneticnanoparticles was in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010